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Introduction
The Creutzfeld-Jakob disease (CJD) example

Creutzfeld-Jakob disease (CJD): a (very) rare disease

A small randomized trial (N=12) on the use of Doxycycline

was conducted (endpoint: survival),

registry data (N=88) was considered in addition

(analysis stratified by propensity scores)

heterogeneity anticipated

both estimates were combined

(using standard random-effects meta-analysis)1

study

observational

randomized

mean

hazard ratio

0.61

0.84

0.63

95% CI

[0.37, 0.99]

[0.24, 2.90]

[0.40, 0.99]

0.25 0.50 1.0 2.0

HR

1
D. Varges et al. Doxycycline in early CJD – a double-blinded randomised phase II and observational study. Journal of

Neurology, Neurosurgery and Psychiatry 88(2):119–125, 2017.
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Introduction
Random-effects meta-analysis

normal-normal hierarchical model (NNHM):

yi |θi ∼ Normal(θi , σi
2),

θi |µ, τ ∼ Normal(µ, τ2) (for i = 1, . . . , k)

Data:

estimates yi

standard errors σi

Parameters:

study-specific effects θi

overall effect µ

heterogeneity τ

quoted estimate shrinkage estimate

study

observational

randomized

mean

hazard ratio

0.61

0.84

0.65

95% CI

[0.37, 0.99]

[0.24, 2.90]

[0.29, 1.53]

0.25 0.50 1.0 2.0

HR

(Bayesian approach:

prior specification for µ and τ )
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C. Röver, T. Friede Complementing evidence from an RCT. . . September 25, 2018 3 / 13



Introduction
Random-effects meta-analysis

normal-normal hierarchical model (NNHM):

yi |θi ∼ Normal(θi , σi
2),

θi |µ, τ ∼ Normal(µ, τ2) (for i = 1, . . . , k)

Data:

estimates yi

standard errors σi

Parameters:

study-specific effects θi

overall effect µ

heterogeneity τ

quoted estimate shrinkage estimate

study

observational

randomized

mean

hazard ratio

0.61

0.84

0.65

95% CI

[0.37, 0.99]

[0.24, 2.90]

[0.29, 1.53]

0.25 0.50 1.0 2.0

HR

(Bayesian approach:

prior specification for µ and τ )
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Introduction
Shrinkage estimation

commonly:

main interest in overall effect µ

quoted estimate shrinkage estimate

study

observational

randomized

mean

hazard ratio

0.61

0.84

0.65

95% CI

[0.37, 0.99]

[0.24, 2.90]

[0.29, 1.53]

0.25 0.50 1.0 2.0

HR

shrinkage estimation:

(updated) estimate of study’s specific effect θi

based on all estimates (y1, . . . , yk , σ1, . . . , σk )

more or less “shrunk” towards the overall mean µ,

(depending on heterogeneity)

a.k.a. best linear unbiased prediction (BLUP) 2

2
S.W. Raudenbush, A.S. Bryk. Empirical Bayes meta-analysis. Journal of Educational Statistics 10(2):75–98, 1985.
G.K. Robinson. That BLUP is a good thing: The estimation of random effects. Statistical Science 6(1):15–51, 1991.
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Shrinkage estimation
Why shrinkage?

often of primary interest: a particular study (-outcome)

here:

randomized study

additional data

aim: to infer the randomized study’s outcome

(a shrinkage estimate, not an overall mean3)

NNHM (meta-analysis) model provides framework

useful when data are sparse (e.g., rare diseases)

3
S. Wandel, B. Neuenschwander, C. Röver, T. Friede. Using phase II data for the analysis of phase III studies: an application

in rare diseases. Clinical Trials, 14(3):277–285, 2017.

C. Röver, T. Friede Complementing evidence from an RCT. . . September 25, 2018 5 / 13



Shrinkage estimation
The MAP / MAC connection

two ways to analyze i th estimate:

Meta-analytic-combined (MAC) approach:

perform joint meta-analyis of all studies,
determine ith shrinkage estimate

Meta-analytic-predictive (MAP) approach:
meta-analyze all but ith study;

resulting posterior yields meta-analytic predictive (MAP) prior,

use MAP prior and data yi to infer θi

both approaches yield identical results4

MAP approach

additional motivation

quantification of information contributed by additional studies

4
H. Schmidli, et al. Robust meta-analytic-predictive priors in clinical trials with historical control information. Biometrics

70(4):1023–1032, 2014.
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Shrinkage estimation
Two-study scenario

consider: primary interest in randomized trial outcome

(no “breaking of randomization” by pooled analysis)

does it make sense to consider shrinkage estimates from a

2-study meta-analysis?

how do shrinkage estimates behave in general?
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consider: primary interest in randomized trial outcome

(no “breaking of randomization” by pooled analysis)

does it make sense to consider shrinkage estimates from a

2-study meta-analysis?

how do shrinkage estimates behave in general?

investigate example cases

consider pair of studies, binary endpoint (log-OR);

n1 = 25, n2 = 400 → approx. σ1 = 0.8, σ2 = 0.2
effect prior: p(µ) = uniform

heterogeneity prior: p(τ) = half-Normal(0.5)
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Shrinkage estimation
Two-study scenario
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Shrinkage estimation
Two-study scenario
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relative shrinkage interval width: may be substantially shorter
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Shrinkage estimation
Two-study simulations

how do shrinkage intervals behave on average?

what gain can we expect (if any)?

investigate:

coverage

interval width

consider again pairs of studies (binary endpoint);

n1,n2 ∈ {25,100,400},

σ1, σ2 ∈ {0.8,0.4,0.2}
prior: uniform prior for µ, half-Normal(0.5) for heterogeneity τ
(sensitivity analysis with half-Normal(1.0))

derive estimate for θ1
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Shrinkage estimation
Two-study simulations: coverage (%)

τ

small moderate substantial large very large

n1/n2 0.0 0.1 0.2 0.5 1.0 2.0 ∗

25/400 99.8 99.5 99.0 93.4 84.1 79.4 94.7

25/100 98.7 98.8 98.3 93.6 86.1 79.9 95.1

100/400 98.5 98.1 97.2 93.3 90.7 90.6 94.9

25/25 96.7 96.8 96.1 94.6 90.4 84.5 95.0

100/100 96.8 96.7 96.4 94.0 91.3 91.0 95.7

400/400 96.9 96.7 95.0 93.9 93.9 94.1 95.0

100/25 96.0 95.8 95.1 94.8 93.9 92.6 94.7

400/100 95.2 95.8 95.2 94.8 93.7 93.8 95.1

400/25 95.2 94.9 95.3 94.7 94.8 94.5 95.3

∗: heterogeneity τ drawn from prior distribution
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400/100 95.2 95.8 95.2 94.8 93.7 93.8 95.1

400/25 95.2 94.9 95.3 94.7 94.8 94.5 95.3

∗: heterogeneity τ drawn from prior distribution

good coverage for non-extreme heterogeneity
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Shrinkage estimation
Two-study simulations: relative interval width (%)

τ

small moderate substantial large very large

n1/n2 0.0 0.1 0.2 0.5 1.0 2.0 ∗

25/400 62.3 62.7 63.0 65.6 72.1 83.1 65.1

25/100 67.5 67.4 67.9 69.8 75.2 84.2 69.5

100/400 78.5 78.7 79.9 85.2 91.4 95.9 83.4

25/25 78.9 79.0 79.0 79.7 81.8 86.8 79.7

100/100 85.1 85.4 85.7 88.5 92.5 96.2 87.5

400/400 89.9 90.5 91.9 95.5 97.8 99.0 93.7

100/25 92.9 92.9 93.0 93.4 94.6 96.6 93.3

400/100 95.0 95.1 95.4 96.7 98.1 99.1 96.2

400/25 98.0 98.0 98.1 98.2 98.6 99.2 98.2

∗: heterogeneity τ drawn from prior distribution
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Shrinkage estimation
Two-study simulations: relative interval width (%)

τ

small moderate substantial large very large

n1/n2 0.0 0.1 0.2 0.5 1.0 2.0 ∗

25/400 62.3 62.7 63.0 65.6 72.1 83.1 65.1

25/100 67.5 67.4 67.9 69.8 75.2 84.2 69.5

100/400 78.5 78.7 79.9 85.2 91.4 95.9 83.4

25/25 78.9 79.0 79.0 79.7 81.8 86.8 79.7

100/100 85.1 85.4 85.7 88.5 92.5 96.2 87.5

400/400 89.9 90.5 91.9 95.5 97.8 99.0 93.7

100/25 92.9 92.9 93.0 93.4 94.6 96.6 93.3

400/100 95.0 95.1 95.4 96.7 98.1 99.1 96.2

400/25 98.0 98.0 98.1 98.2 98.6 99.2 98.2

∗: heterogeneity τ drawn from prior distribution

substantial precision gain possible
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Shrinkage estimation
The Creutzfeld-Jakob disease (CJD) example

quoted estimate shrinkage estimate

study

observational

randomized

mean

hazard ratio

0.61

0.84

0.65

95% CI

[0.37, 0.99]

[0.24, 2.90]

[0.29, 1.53]

0.25 0.50 1.0 2.0

HR

shrinkage

interval width: 66%

129% sample size gain

(12 → ≈27 patients)

results not dominated by

external data (only ≈15

of 88 pts. contributed)
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129% sample size gain

(12 → ≈27 patients)

results not dominated by

external data (only ≈15

of 88 pts. contributed)

> require("bayesmeta")

> # perform analysis:

> bm <- bayesmeta(y = cjd$logHR, sigma = cjd$logHR.se,

+ labels = cjd$study,

+ tau.prior = function(t){dhalfnormal(t, scale=0.5)})

>

> # show shrinkage estimates:

> print(exp(bm$theta[c(7,4,8),"randomized"]))

95% lower median 95% upper

0.3142006 0.6767489 1.6112718

C. Röver, T. Friede Complementing evidence from an RCT. . . September 25, 2018 12 / 13



Conclusions
Shrinkage estimation for 2 studies

readily motivated, transparent

valid (coverage close to nominal level)

robust behaviour

potentially substantial gain despite ‘pathological’ setting (k =2)

especially if external data come with great precision (σ2 ≤ σ1)

special “k =2”-case: alternative parametrisation possible

(reference to “overall mean” µ not necessary)

article under review5

computations quick & easy using bayesmeta R package6

5C. Röver, T. Friede. Dynamically borrowing strength from another study. arXiv preprint
1806.01015 (submitted for publication), 2018.

6
http://cran.r-project.org/package=bayesmeta
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CJD example
R code

cjd <- cbind.data.frame("study" = c("observational", "randomized"),

"logHR" = c(-0.49948, -0.17344),

"logHR.se" = c(0.2493, 0.6312))

# analyze:

require("bayesmeta")

bm <- bayesmeta(y = cjd$logHR,

sigma = cjd$logHR.se,

labels = cjd$study,

tau.prior = function(t){dhalfnormal(t, scale=0.5)})

# show results:

print(bm)

# show forest plot:

forestplot(bm, xlab="log-HR")

# show shrinkage estimates:

print(bm$theta)

print(exp(bm$theta[c(7,4,8),"randomized"]))
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Alternative model parametrization
Details

the normal-normal hierarchical model (NNHM):

yi |θi ∼ Normal(θi , σ
2
i ),

θi |µ, τ ∼ Normal(µ, τ2) (for i = 1, . . . , k)

the alternative reference model:

yi |ϑi ∼ Normal(ϑi , σ
2
i ),

ϑ1|α, β ∼ Normal(α, 0) (i.e., ϑ1 = α),

ϑ2|α, β ∼ Normal(α, β2)

both models yield identical shrinkage estimates7 for k =2 and

(improper) uniform priors for µ and α
(any) heterogeneity prior with density p(τ) = f⋆(τ),
and matching prior with density p(β) = 1

√

2
f⋆
(

β
√

2

)

for β

7
C. Röver, T. Friede. Dynamically borrowing strength from another study. arXiv preprint 1806.01015 (submitted for

publication), 2018.
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Heterogeneity (τ )
Half-Normal prior: motivation (1)

recommended family: half-t , half-Normal, half-Cauchy

(not recommended: inverse-Gamma)8

effect measure here: logarithmic ratio (odds ratio, hazard ratio,...)

heterogeneity τ may be translated

into implied spread of effects θi and exp(θi)

Spiegelhalter et al. (2004)9 proposed categories
• “reasonable”: 0.1 < τ < 0.5
• “fairly high”: 0.5 < τ < 1.0
• “fairly extreme”: τ > 1.0

Turner & al. (2015)10 empirically investigated heterogeneity in

meta-analyses archived in the Cochrane Library

8
A. Gelman. Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 1(3):515–534, 2006.

9
D.J. Spiegelhalter, K.R. Abrams, J.P. Myles. Bayesian approaches to clinical trials and health-care evaluation. John Wiley &

Sons, 2004. Sec. 5.7.
10

R.M. Turner et al. Predictive distributions for between-study heterogeneity and simple methods for their application in
Bayesian meta-analysis. Statistics in Medicine 34(6):984–998, 2015.
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Heterogeneity (τ )
Half-Normal prior: motivation (2)

proposed categories:
• “reasonable”: 0.1 < τ < 0.5
• “fairly high”: 0.5 < τ < 1.0
• “fairly extreme”: τ > 1.0

Implications of certain τ values:

95% range of effects exp(θi)
spans a range of exp(3.92τ)
(ratio largest / smallest)

τ exp(3.92τ)

0.0 1.00

0.1 1.48
0.2 2.19

0.5 7.10
1.0 50.4

2.0 2540
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Heterogeneity (τ )
Half-Normal prior: motivation (3)

heterogeneity (τ)

p
ri

o
r 

d
e
n
s
it
y

0.0 0.5 1.0 1.5 2.0

0
.0

1
.0

2
.0

(small) "reasonable" "fairly high" "fairly extreme"

Turner et al. (2015)
half−Normal(0.5)
half−Normal(1.0)

"fairly extreme"

"fairly high"

"reasonable"

(small)

Turner et al. (2015)

probability

0.0 0.2 0.4 0.6

"fairly extreme"

"fairly high"

"reasonable"

(small)

half−Normal(0.5)

probability

0.0 0.2 0.4 0.6

"fairly extreme"

"fairly high"

"reasonable"

(small)

half−Normal(1.0)

probability

0.0 0.2 0.4 0.6

C. Röver, T. Friede Complementing evidence from an RCT. . . September 25, 2018 13 / 13



Standard errors and sample sizes
Heuristics

assume: standard errors scale with 1√
N

doubling the sample size (N = 2×N0)

means a shorter s.e.,

shorter by a factor of 1√
2
= 71%

N 1√
N/N0

N0 100%
2N0 71%
3N0 58%
4N0 50%

...
...
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Standard errors and sample sizes
Heuristics

assume: standard errors scale with 1√
N

doubling the sample size (N = 2×N0)

means a shorter s.e.,

shorter by a factor of 1√
2
= 71%

N 1√
N/N0

N0 100%
2N0 71%
3N0 58%
4N0 50%

...
...

inversely: a SE only σ

σ0
= 71% as wide

implies a 100% gain in sample size

generally:

effective sample size gain ( σ

σ0
)−2−1

σ/σ0 gain

100% 0%
90% 23%
80% 56%
70% 104%
50% 300%

...
...
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Shrinkage estimation
Two-study simulations: relative sample size gain (%)

τ

n1/n2 0.0 0.1 0.2 0.5 1.0 2.0 ∗

25/400 162 160 158 144 113 68.4 147

25/100 123 123 121 111 89.6 56.3 113

100/400 64.5 64.0 60.0 43.8 25.7 12.7 49.4

25/25 61.2 60.9 60.7 58.4 51.8 36.9 58.7

100/100 38.8 38.1 37.1 29.6 19.4 10.1 32.3

400/400 24.2 22.9 19.4 11.0 5.5 2.4 15.1

100/25 15.9 16.0 15.8 14.8 11.9 7.5 14.9

400/100 11.0 10.7 10.0 7.3 4.2 2.0 8.3

400/25 4.1 4.1 4.0 3.7 2.9 1.7 3.7

∗: heterogeneity τ drawn from prior distribution
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