Complementing evidence from a small scale RCT by registry data in a rare disease setting

Christian Röver and Tim Friede

Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany

September 25, 2018

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement number FP HEALTH 2013-602144.

C. Röver, T. Friede

Complementing evidence from an RCT...

Introduction

The Creutzfeld-Jakob disease (CJD) example

- Creutzfeld-Jakob disease (CJD): a (very) rare disease
- A small randomized trial (N=12) on the use of Doxycycline was conducted (endpoint: survival), registry data (N=88) was considered in addition (analysis stratified by propensity scores)
- heterogeneity anticipated
- both estimates were combined (using standard random-effects meta-analysis)¹

study	hazard ratio	95% CI	
observational	0.61	[0.37, 0.99]	
randomized	0.84	[0.24, 2.90]	
mean	0.63	[0.40, 0.99]	•
			0.25 0.50 1.0 2.0
			HR

^ID. Varges et al. Doxycycline in early CJD – a double-blinded randomised phase II and observational study. *Journal of Neurology, Neurosurgery and Psychiatry* 88(2):119–125, 2017.

$$y_i | \theta_i \sim \text{Normal}(\theta_i, \sigma_i^2),$$

 $\theta_i | \mu, \tau \sim \text{Normal}(\mu, \tau^2) \quad \text{(for } i = 1, \dots, k)$

Data:

- estimates y_i
- standard errors σ_i

Parameters:

- study-specific effects θ_i
- overall effect μ
- heterogeneity τ

 study
 hazard ratio
 95% Cl

 observational
 0.61
 [0.37, 0.99]
 •••

 randomized
 0.84
 [0.24, 2.90]
 •••

 mean
 0.65
 [0.29, 1.53]
 •••

 HB
 HB
 HB
 HB

quoted estimate + shrinkage estimate

$$\begin{array}{lll} \mathbf{y}_i | \theta_i & \sim & \mathsf{Normal}(\theta_i, \, \sigma_i^2), \\ \theta_i | \mu, \tau & \sim & \mathsf{Normal}(\mu, \, \tau^2) & (\mathsf{for} \; i = 1, \dots, k) \end{array}$$

Data:

- estimates y_i
- standard errors σ_i

Parameters:

- study-specific effects θ_i
- overall effect μ
- heterogeneity τ

 study
 hazard ratio
 95% Cl

 observational
 0.61
 [0.37, 0.99]

 randomized
 0.84
 [0.24, 2.90]

 mean
 0.65
 [0.29, 1.53]

 UBB
 UBB
 UBB

quoted estimate + shrinkage estimate

$$y_i | \theta_i \sim \text{Normal}(\theta_i, \sigma_i^2),$$

 $\theta_i | \mu, \tau \sim \text{Normal}(\mu, \tau^2) \quad \text{(for } i = 1, \dots, k)$

Data:

- estimates y_i
- standard errors σ_i

Parameters:

- study-specific effects θ_i
- overall effect μ
- heterogeneity τ

 study
 hazard ratio
 95% CI

 observational
 0.61
 [0.37, 0.99]
 •

 randomized
 0.84
 [0.24, 2.90]
 •

 mean
 0.65
 [0.29, 1.53]
 •

 HB
 HB
 HB
 HB

quoted estimate + shrinkage estimate

$$y_i | \theta_i \sim \text{Normal}(\theta_i, \sigma_i^2),$$

 $\theta_i | \mu, \tau \sim \text{Normal}(\mu, \tau^2) \quad \text{(for } i = 1, \dots, k)$

Data:

- estimates y_i
- standard errors σ_i

Parameters:

- study-specific effects θ_i
- overall effect μ
- heterogeneity τ

 study
 hazard ratio
 95% Cl

 observational
 0.61
 [0.37, 0.99]

 randomized
 0.84
 [0.24, 2.90]

 mean
 0.65
 [0.29, 1.53]

 HB
 HB
 HB

quoted estimate + shrinkage estimate

$$y_i | \theta_i \sim \text{Normal}(\theta_i, \sigma_i^2),$$

 $\theta_i | \mu, \tau \sim \text{Normal}(\mu, \tau^2) \quad \text{(for } i = 1, \dots, k)$

Data:

- estimates y_i
- standard errors σ_i

Parameters:

- study-specific effects θ_i
- overall effect μ
- heterogeneity τ

 study
 hazard ratio
 95% Cl

 observational
 0.61
 [0.37, 0.99]

 randomized
 0.84
 [0.24, 2.90]

 mean
 0.65
 [0.29, 1.53]

quoted estimate + shrinkage estimate

$$y_i | \theta_i \sim \text{Normal}(\theta_i, \sigma_i^2),$$

 $\theta_i | \mu, \tau \sim \text{Normal}(\mu, \tau^2) \quad \text{(for } i = 1, \dots, k)$

Data:

- estimates y_i
- standard errors σ_i

Parameters:

- study-specific effects θ_i
- overall effect μ
- heterogeneity τ

 study
 hazard ratio
 95% Cl

 observational
 0.61
 [0.37, 0.99]

 randomized
 0.84
 [0.24, 2.90]

 mean
 0.65
 [0.29, 1.53]

 0.25
 0.50
 1.0

 HR
 0.25
 0.20

quoted estimate + shrinkage estimate

commonly:

main interest in overall effect μ

study	hazard ratio	95% CI	
observational	0.61	[0.37, 0.99]	-+
randomized	0.84	[0.24, 2.90]	
mean	0.65	[0.29, 1.53]	
			0.25 0.50 1.0 2.0 HR

shrinkage estimation:

- (updated) estimate of study's specific effect θ_i
- based on all estimates $(y_1, \ldots, y_k, \sigma_1, \ldots, \sigma_k)$
- more or less "shrunk" towards the overall mean μ, (depending on heterogeneity)
- a.k.a. best linear unbiased prediction (BLUP)²

²S.W. Raudenbush, A.S. Bryk. Empirical Bayes meta-analysis. *Journal of Educational Statistics* 10(2):75–98, 1985. G.K. Robinson. That BLUP is a good thing: The estimation of random effects. *Statistical Science* 6(1):15–51, 1991.

commonly:

• main interest in overall effect μ

shrinkage estimation:

- (updated) estimate of study's specific effect θ_i
- based on all estimates $(y_1, \ldots, y_k, \sigma_1, \ldots, \sigma_k)$
- more or less "shrunk" towards the overall mean μ, (depending on heterogeneity)
- a.k.a. best linear unbiased prediction (BLUP)²

²S.W. Raudenbush, A.S. Bryk. Empirical Bayes meta-analysis. *Journal of Educational Statistics* 10(2):75–98, 1985. G.K. Robinson. That BLUP is a good thing: The estimation of random effects. *Statistical Science* 6(1):15–51, 1991.

- often of primary interest: a particular study (-outcome)
- here:

randomized study additional data

- aim: to infer the randomized study's outcome (a shrinkage estimate, not an overall mean³)
- NNHM (meta-analysis) model provides framework
- useful when data are sparse (e.g., rare diseases)

³S. Wandel, B. Neuenschwander, C. Röver, T. Friede. Using phase II data for the analysis of phase III studies: an application in rare diseases. *Clinical Trials*, 14(3):277–285, 2017.

The MAP / MAC connection

- two ways to analyze *i*th estimate:
 - Meta-analytic-combined (MAC) approach: perform joint meta-analyis of all studies, determine *i*th shrinkage estimate
 - Meta-analytic-predictive (MAP) approach: meta-analyze all but *i*th study; resulting posterior yields *meta-analytic predictive (MAP)* prior, use MAP prior and data y_i to infer θ_i
- both approaches yield identical results⁴
- MAP approach
 - additional motivation
 - quantification of information contributed by additional studies

⁴H. Schmidli, et al. Robust meta-analytic-predictive priors in clinical trials with historical control information. *Biometrics* 70(4):1023–1032, 2014.

Two-study scenario

- consider: primary interest in randomized trial outcome (no "breaking of randomization" by pooled analysis)
- does it make sense to consider shrinkage estimates from a 2-study meta-analysis?
- how do shrinkage estimates behave in general?

Two-study scenario

- consider: primary interest in randomized trial outcome (no "breaking of randomization" by pooled analysis)
- does it make sense to consider shrinkage estimates from a 2-study meta-analysis?
- how do shrinkage estimates behave in general?
- investigate example cases
- consider pair of studies, binary endpoint (log-OR); $n_1 = 25, n_2 = 400 \rightarrow \text{approx. } \sigma_1 = 0.8, \sigma_2 = 0.2$ effect prior: $p(\mu) = \text{uniform}$ heterogeneity prior: $p(\tau) = \text{half-Normal}(0.5)$

Two-study scenario

• $\sigma_1 = 0.8$, $\sigma_2 = 0.2$, interested in θ_1

• robust behaviour

Two-study scenario

- robust behaviour
- relative shrinkage interval width: may be substantially shorter

Two-study simulations

- how do shrinkage intervals behave on average?
- what gain can we expect (if any)?
- investigate:
 - coverage
 - interval width
- consider again pairs of studies (binary endpoint); $n_1, n_2 \in \{25, 100, 400\},\ \sigma_1, \sigma_2 \in \{0.8, 0.4, 0.2\}$
- prior: uniform prior for μ, half-Normal(0.5) for heterogeneity τ (sensitivity analysis with half-Normal(1.0))
- derive estimate for θ_1

Two-study simulations: coverage (%)

	au							
<i>n</i> ₁ / <i>n</i> ₂	0.0	<i>small</i> 0.1	<i>moderate</i> 0.2	<i>substantial</i> 0.5	<i>large</i> 1.0	very large 2.0	*	
25/400	99.8	99.5	99.0	93.4	84.1	79.4	94.7	
25/100 100/400	98.7 98.5	98.8 98.1	98.3 97.2	93.6 93.3	86.1 90.7	79.9 90.6	95.1 94.9	
25/25 100/100 400/400	96.7 96.8 96.9	96.8 96.7 96.7	96.1 96.4 95.0	94.6 94.0 93.9	90.4 91.3 93.9	84.5 91.0 94.1	95.0 95.7 95.0	
100/25 400/100	96.0 95.2	95.8 95.8	95.1 95.2	94.8 94.8	93.9 93.7	92.6 93.8	94.7 95.1	
400/25	95.2	94.9	95.3	94.7	94.8	94.5	95.3	

*: heterogeneity τ drawn from prior distribution

Two-study simulations: coverage (%)

	au							
<i>n</i> ₁ / <i>n</i> ₂	0.0	<i>small</i> 0.1	<i>moderate</i> 0.2	<i>substantial</i> 0.5	<i>large</i> 1.0	very large 2.0	*	
25/400	99.8	99.5	99.0	93.4	84.1	79.4	94.7	
25/100 100/400	98.7 98.5	98.8 98.1	98.3 97.2	93.6 93.3	86.1 90.7	79.9 90.6	95.1 94.9	
25/25 100/100 400/400	96.7 96.8 96.9	96.8 96.7 96.7	96.1 96.4 95.0	94.6 94.0 93.9	90.4 91.3 93.9	84.5 91.0 94.1	95.0 95.7 95.0	
100/25 400/100	96.0 95.2	95.8 95.8	95.1 95.2	94.8 94.8	93.9 93.7	92.6 93.8	94.7 95.1	
400/25	95.2	94.9	95.3	94.7	94.8	94.5	95.3	

*: heterogeneity τ drawn from prior distribution

• good coverage for non-extreme heterogeneity

Two-study simulations: relative interval width (%)

	au							
<i>n</i> ₁ / <i>n</i> ₂	0.0	<i>small</i> 0.1	<i>moderate</i> 0.2	<i>substantial</i> 0.5	<i>large</i> 1.0	very large 2.0	*	
25/400	62.3	62.7	63.0	65.6	72.1	83.1	65.1	
25/100 100/400	67.5 78.5	67.4 78.7	67.9 79.9	69.8 85.2	75.2 91.4	84.2 95.9	69.5 83.4	
25/25 100/100 400/400	78.9 85.1 89.9	79.0 85.4 90.5	79.0 85.7 91.9	79.7 88.5 95.5	81.8 92.5 97.8	86.8 96.2 99.0	79.7 87.5 93.7	
100/25 400/100	92.9 95.0	92.9 95.1	93.0 95.4	93.4 96.7	94.6 98.1	96.6 99.1	93.3 96.2	
400/25	98.0	98.0	98.1	98.2	98.6	99.2	98.2	

*: heterogeneity τ drawn from prior distribution

Two-study simulations: relative interval width (%)

	au							
<i>n</i> ₁ / <i>n</i> ₂	0.0	<i>small</i> 0.1	<i>moderate</i> 0.2	<i>substantial</i> 0.5	<i>large</i> 1.0	very large 2.0	*	
25/400	62.3	62.7	63.0	65.6	72.1	83.1	65.1	
25/100 100/400	67.5 78.5	67.4 78.7	67.9 79.9	69.8 85.2	75.2 91.4	84.2 95.9	69.5 83.4	
25/25 100/100 400/400	78.9 85.1 89.9	79.0 85.4 90.5	79.0 85.7 91.9	79.7 88.5 95.5	81.8 92.5 97.8	86.8 96.2 99.0	79.7 87.5 93.7	
100/25 400/100	92.9 95.0	92.9 95.1	93.0 95.4	93.4 96.7	94.6 98.1	96.6 99.1	93.3 96.2	
400/25	98.0	98.0	98.1	98.2	98.6	99.2	98.2	

*: heterogeneity τ drawn from prior distribution

• substantial precision gain possible

The Creutzfeld-Jakob disease (CJD) example

quoted estimate + shrinkage estimate						
study	hazard ratio	95% Cl				
observational	0.61	[0.37, 0.99]				
randomized	0.84	[0.24, 2.90]				
mean	0.65	[0.29, 1.53]	-			
			0.25 0.50 1.0 2.0 HR			

- shrinkage interval width: 66%
- 129% sample size gain (12 $\rightarrow \approx$ 27 patients)
- results not dominated by external data (only ≈15 of 88 pts. contributed)

The Creutzfeld-Jakob disease (CJD) example

	-	-	
study	hazard ratio	95% Cl	
observational	0.61	[0.37, 0.99]	-
randomized	0.84	[0.24, 2.90]	
mean	0.65	[0.29, 1.53]	
			0.25 0.50 1.0 2.0 HR

quoted estimate + shrinkage estimate

- shrinkage interval width: 66%
- 129% sample size gain (12 $\rightarrow \approx$ 27 patients)
- results not dominated by external data (only ≈15 of 88 pts. contributed)

- readily motivated, transparent
- valid (coverage close to nominal level)
- robust behaviour
- potentially substantial gain despite 'pathological' setting (k=2)
- especially if external data come with great precision ($\sigma_2 \leq \sigma_1$)
- special "k=2"-case: alternative parametrisation possible (reference to "overall mean" μ not necessary)
- article under review⁵
- computations quick & easy using bayesmeta R package⁶

⁶http://cran.r-project.org/package=bayesmeta

⁵C. Röver, T. Friede. Dynamically borrowing strength from another study. *arXiv preprint 1806.01015* (submitted for publication), 2018.

+++ additional slides +++

CJD example

R code

```
cjd <- cbind.data.frame("study" = c("observational", "randomized"),</pre>
                        "logHR" = c(-0.49948, -0.17344),
                        "logHR.se" = c(0.2493, 0.6312))
# analyze:
require("bayesmeta")
                 = cjd$logHR,
bm <- bayesmeta(v
                sigma = cjd$logHR.se,
                labels = cid$studv.
                tau.prior = function(t) {dhalfnormal(t, scale=0.5)})
# show results:
print (bm)
# show forest plot:
forestplot(bm, xlab="log-HR")
# show shrinkage estimates:
print(bm$theta)
print(exp(bm$theta[c(7,4,8),"randomized"]))
```

Alternative model parametrization

• the normal-normal hierarchical model (NNHM):

$$y_i | \theta_i \sim \text{Normal}(\theta_i, \sigma_i^2),$$

 $\theta_i | \mu, \tau \sim \text{Normal}(\mu, \tau^2) \quad \text{(for } i = 1, \dots, k)$

• the alternative reference model:

l

$$\begin{array}{lll} \mathbf{y}_{i}|\vartheta_{i} & \sim & \mathsf{Normal}(\vartheta_{i},\,\sigma_{i}^{2}), \\ \vartheta_{1}|\alpha,\beta & \sim & \mathsf{Normal}(\alpha,\,\mathbf{0}) & (\text{i.e., } \vartheta_{1}=\alpha), \\ \vartheta_{2}|\alpha,\beta & \sim & \mathsf{Normal}(\alpha,\,\beta^{2}) \end{array}$$

- both models yield identical shrinkage estimates⁷ for k=2 and
 - (improper) uniform priors for μ and α
 - (any) heterogeneity prior with density $p(\tau) = f_*(\tau)$, and matching prior with density $p(\beta) = \frac{1}{\sqrt{2}} f_*(\frac{\beta}{\sqrt{2}})$ for β

⁷ C. Röver, T. Friede. Dynamically borrowing strength from another study. arXiv preprint 1806.01015 (submitted for publication), 2018.

- recommended family: half-t, half-Normal, half-Cauchy (not recommended: inverse-Gamma)⁸
- effect measure here: logarithmic ratio (odds ratio, hazard ratio,...)
- heterogeneity τ may be translated into implied spread of effects θ_i and exp(θ_i)
- Spiegelhalter et al. (2004)⁹ proposed categories
 - "reasonable": $0.1 < \tau < 0.5$
 - "fairly high": $0.5 < \tau < 1.0$
 - "fairly extreme": $\tau > 1.0$
- Turner & al. (2015)¹⁰ empirically investigated heterogeneity in meta-analyses archived in the Cochrane Library

⁸A. Gelman. Prior distributions for variance parameters in hierarchical models. *Bayesian Analysis* 1(3):515–534, 2006.

⁹D.J. Spiegelhalter, K.R. Abrams, J.P. Myles. Bayesian approaches to clinical trials and health-care evaluation. John Wiley & Sons, 2004. Sec. 5.7.

¹⁰ R.M. Turner *et al.* Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis. *Statistics in Medicine* 34(6):984–998, 2015.

Heterogeneity (τ) Half-Normal prior: motivation (2)

• proposed categories:

- "reasonable": $0.1 < \tau < 0.5$
- "fairly high": $0.5 < \tau < 1.0$
- "fairly extreme": $\tau > 1.0$

 Implications of certain τ values: 95% range of effects exp(θ_i) spans a range of exp(3.92τ) (ratio largest / smallest)

au	$\exp(3.92 au)$
0.0	1.00
0.1	1.48
0.2	2.19
0.5	7.10
1.0	50.4
2.0	2540

Heterogeneity (τ)

Half-Normal prior: motivation (3)

C. Röver, T. Friede

Complementing evidence from an RCT...

Standard errors and sample sizes

Heuristics

- assume: standard errors scale with $\frac{1}{\sqrt{N}}$
- doubling the sample size $(N = 2 \times N_0)$ means a shorter s.e., shorter by a factor of $\frac{1}{\sqrt{2}} = 71\%$

Ν	$\frac{1}{\sqrt{N/N_0}}$
N ₀	100 %
2 <i>N</i> 0	71 %
3 <i>N</i> 0	58 %
4 <i>N</i> ₀	50 %
÷	÷

Standard errors and sample sizes

Heuristics

- assume: standard errors scale with $\frac{1}{\sqrt{N}}$
- doubling the sample size $(N = 2 \times N_0)$ means a shorter s.e., shorter by a factor of $\frac{1}{\sqrt{2}} = 71\%$

N	$\frac{1}{\sqrt{N/N_0}}$
N ₀	100 %
2 <i>N</i> 0	71 %
3 <i>N</i> 0	58%
4 <i>N</i> 0	50 %
÷	÷
σ/σ_{0}	gain
100 %	0%
90 %	23 %
80 %	56 %
70 %	104 %
50 %	300 %

- inversely: a SE only ^σ/_{σ0} = 71 % as wide implies a 100% gain in sample size
- generally: effective sample size gain $\left(\frac{\sigma}{\sigma_0}\right)^{-2} - 1$

Two-study simulations: relative sample size gain (%)

				au			
<i>n</i> ₁ / <i>n</i> ₂	0.0	0.1	0.2	0.5	1.0	2.0	*
25/400	162	160	158	144	113	68.4	147
25/100 100/400	123 64.5	123 64.0	121 60.0	111 43.8	89.6 25.7	56.3 12.7	113 49.4
25/25 100/100 400/400	61.2 38.8 24.2	60.9 38.1 22.9	60.7 37.1 19.4	58.4 29.6 11.0	51.8 19.4 5.5	36.9 10.1 2.4	58.7 32.3 15.1
100/25 400/100	15.9 11.0	16.0 10.7	15.8 10.0	14.8 7.3	11.9 4.2	7.5 2.0	14.9 8.3
400/25	4.1	4.1	4.0	3.7	2.9	1.7	3.7

*: heterogeneity τ drawn from prior distribution